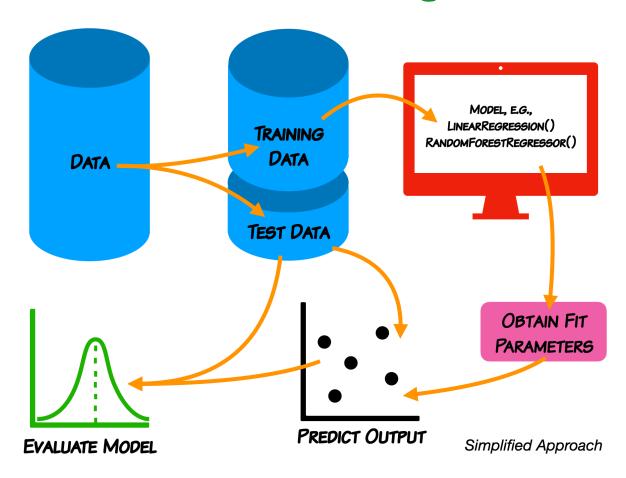
Day 11 - Support Vector Machines

Oct. 13, 2020

Administrative

- Midterm will be given Thursday 10/29 in class
 - Focus on classification problems (More details on Tuesday; review sheet)
 - Read data, clean data, filter data, standardize data, model data, evaluate model with plots
 - Open book, note, internet no chatting with other students
- **Changing groups**: After the midterm we will put you in new groups for the rest of the semester.
 - We will try to keep you with at least one other person from your current group.
- Please complete this MidSemester survey: www.egr.msu.edu/mid-semester-evaluation
 evaluation (https://www.egr.msu.edu/mid-semester-evaluation)

From Pre-Class Assignment


Useful bits

• I have a better sense of what an SVM is doing

Challenging bits

- I don't know how much understanding I should try to have about SVM
- I was having trouble making the blobs
- I could not figure out how to get the line of best separation working

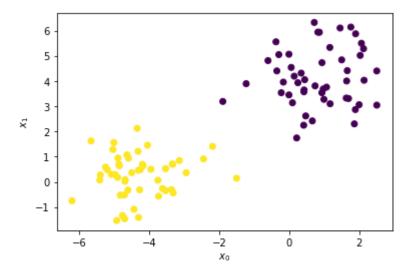
Reminder of the ML Paradigm

We do not expect you in this class to learn every detail of the models.

Support Vector Machines

- As a classifier, an SVM creates new dimensions from the original data, to be able to seperate the groups along the original features as well as any created dimensions.
- The kernel that we choose tells us what constructed dimensions are available to us.
- We will start with a linear kernel, which tries to construct hyper-planes to seperate the data.
 - For 2D, linearly separable data, this is just a line.

We use make_blobs because it gives us control over the data and it's separation; we don't have to clean or standardize it.


Let's make some blobs

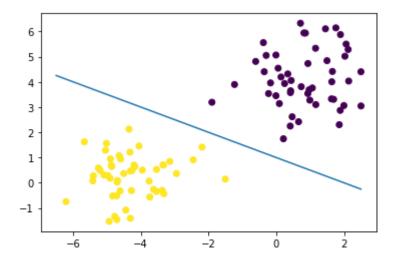
```
In [19]: ##imports
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets import make_blobs

X, y = make_blobs(n_samples = 100, n_features=2, centers=2, random_state=3)

## Plot Blobs
plt.scatter(X[:,0], X[:,1], c=y, cmap="viridis")
plt.xlabel(r'$x_0$'); plt.ylabel(r'$x_1$')
```

Out[19]: Text(0, 0.5, '\$x_1\$')

Let's draw a separation line


We are just guessing. SVM does this automatically.

```
In [23]: ## Make guess for separation line
    plt.scatter(X[:,0], X[:,1], c=y, cmap="viridis")

    xx = np.linspace(-6.5, 2.5)

#yy = -1*xx
#yy = -2 * xx - 1
yy = -0.5 * xx + 1
plt.plot(xx,yy)
```

Out[23]: [<matplotlib.lines.Line2D at 0x7ff7f1409750>]

Questions, Comments, Concerns?